
Spatially-Adaptive Pixelwise Networks for Fast Image Translation

Supplementary Materials

Tamar Rott Shaham1 Michaël Gharbi2 Richard Zhang2 Eli Shechtman2 Tomer Michaeli1

1Technion 2Adobe Research

1. Implementation Details

1.1. Training Details

We use the Adam optimizer with β1 = 0, β1 = 0.999, and learning rates of 0.0001 and 0.0004 for the generator and
discriminator, respectively. We initialize our model using the Xavier method, and train it for 300 epochs, with linear learning
rate decay over the last 100 epochs. The weights of the feature matching loss and the VGG loss are λfeat = 10 and λvgg = 10,
respectively.

1.2. Lowresolution network architecture

Our low resolution network gets a bilinearly downsampled version of the input image, and further reduces
the spatial dimensions by a factor of 16, as follows. Let CkSl denote a 3 × 3 Convolution-InstanceNorm-
ReLU layer with k filters, and stride of l. Then, the architecture of our low resolution network is:
C64S1-C64S2-C64S2-C64S2-C64S2-C1024S2-C1024S1-C1024S1-C1024S1-C1024S1-C1024S1-C1024S1.
We use one additional 1 × 1 convolutional layer with Ctotal channels, where Ctotal is the total number of parameters per
spatial location of each pixelwise MLP network (see 1.3 for additional details). We use reflection padding in all layers to
reduce boundary artifacts.

1.3. Pixelwise networks architecture

Our network processes each of the input pixels by an MLP. Let fck denote a fully-connected-LeakyReLU layer with a
k-dimensional output, where the leaky ReLU has a slope of 0.01. Then Each of the pixelwise networks has the following
architecture: fc64-fc64-fc64-fc64-fc3. In the last layer we use Tanh instead of leaky ReLU. That is, Ctotal =∑

n[CnCn−1 + Cn], including biases (e.g. for input with 28 channels, Ctotal = 28× 65 + 3× 64× 65 + 64× 4).

1.4. Discriminator architecture

We use a multi-scale discriminator [6], with a 70 × 70 Patch-GAN [2] at each scale. For images of size 512 × 512 we
use 2 scales, and for size 1024× 1024 we use 3 scales. Each of the discriminators has an identical architecture. Specifically,
let Ck denote a 4× 4 Convolution-InstanceNorm-LeakyReLU layer with k filters and stride 2, where the leaky ReLU has
a slope of 0.2. Then the architecture of each of the discriminators is: C64-C128-C256-C512-C1, where we do not use
InstanceNorm after the first convolution layer.

1.5. Computational complexity.

The table below compares the number of multiply–accumulate (MAC) operations and the runtime memory consumed when
processing 256× 512 images. As can be seen, our method requires fewer MACs and less memory than SPADE, and it even
requires slightly fewer MACs than pix2pix (despite achieving much better FID). Moreover, many of the MAC operations
in our case are fully parallelizable (see next paragraph). Please note that this efficiency doesn’t come on the expense of
expressiveness, as the number of trainable parameters in our model is larger than in pix2pix and almost the same as in SPADE
(54.4M for pix2pix, 83.2M for ASAP, 93M for SPADE).

1



method MACs (G) runtime memory (GB)

SPADE [4] 281.0 1.19
pix2pix [2] 56.8 0.28
ASAP (ours) 55.1 0.55

1.6. Achieving high throughput with pixelwise MLPs.

The implementation of the pixel-wise MLPS uses parallel matrix–matrix multiplies on the GPU, between the flattened
versions of the input tensor and the 1 × 1 MLPs kernels. Therefore, all pixel locations are processed at once. That is, φ
computes the parameters for all pixel locations, then all the functions fp operate in parallel on their corresponding pixel
locations p.

2



2. Additional ablations

2.1. ASAPNet vs. slimmer baseline variants.

We gradually reduce the number of parameters in SPADE [4] and pix2pixHD [6] until reaching the same runtime as our
ASAP-Net model. The resulting FID is shown in Fig. 1. As can be seen, for both Facades 512× 512 and Facades 1024× 1024,
the slimmer SPADE and pix2pixHD models indeed have shorter runtimes, but also significantly worse FID scores comparing
to our model.

0 20 40 60 80 100 120
Runtime [ms]

80

100

120

140

160

180

200

FI
D 

(lo
we

r i
s b

et
te

r)

SPADE

SPADE (16ch)

SPADE (32ch)

pix2pixHD
pix2pixHD 
(12ch)

ours

Facades 512x512

0 50 100 150 200 250 300 350 400 450
Runtime [ms]

80

100

120

140

160

180

200

FI
D 

(lo
we

r i
s b

et
te

r)

SPADE

SPADE (24ch)

SPADE (32ch)

pix2pixHD

pix2pixHD 
(16ch)

ours

Facades 1024x1024

Figure 1: ASAP vs. Baselines variations. When gradually cutting down the number of parameters of SPADE [4] and
pix2pixHD [6] to have the same runtime as our ASAP model, both incur degradation in FID scores for both Facades 512× 512
and 1024× 1024 images.

3



2.2. Network design

We quantify the effect of our network design on its performance, in terms of both runtime and visual quality (measured
here by FID scores).

Low-resolution network ablation. We test additional two model designs; a low-resolution network with 256 channels and
15 layers, and one with 512 channels and 10 layers. As can be seen in Fig. 2, these two models achieve shorter runtime
compared to our final model (which has 7 layers with 1024 channels), but this comes at the cost of degradation in visual quality
(quantified by FID scores).

Pixelwise networks ablation. Here we test the the effect of the number of channels in the pixelwise MLP networks on the
model’s performance. As can be seen from Fig. 2, reducing the number of channels from 64 (as in our final design) to 32
drastically affects the FID score. This trend continues when we further reduce the channels to only 16.

10 15 20
Runtime [ms]

65

70

75

80

85

90

95

FI
D 

(lo
we

r i
s b

et
te

r)

256_15

512_10

1024_7 (ours)

low-resolution network ablation

10 12 14 16 18 20
Runtime [ms]

65

70

75

80

85

90

95
16

32

64 (ours)

pixelwise networks ablation

Figure 2: Network architecture ablation. We test how the low-resolution network design and the pixelwise MLP architecture
affect the performance of our ASAP model (on Cityscapes 256× 512.).

4



3. Additional results

3.1. Visual comparisons

Figures 3,4,5,6 present additional visual comparisons with CC-FPSE [3], SPADE [4] and pix2pixHD [6] for the Cityscapes
dataset [1] (for images of size 256× 512 and 512× 1024) and with SPADE [4] and pix2pixHD [6] for the Facades datates [5]
(for images of size 512× 512 and 1024× 1024).

5



512× 512 label map pix2pixHD [6], 62ms SPADE [4], 93ms ASAP-Net (ours), 14ms

Figure 3: Facades 512× 512.

6



1024× 1024 label map pix2pixHD [6], 166ms SPADE [4], 359ms ASAP-Net (ours), 35ms

Figure 4: Facades 1024× 1024.

7



256× 512 label map CC-FPSE [3], 145.8ms pix2pixHD [6], 42ms SPADE [4], 68ms ASAP-Net (ours), 17ms

Figure 5: Cityscapes 256× 512.

8



512× 1024 label map CC-FPSE [3], 520ms pix2pixHD [6], 95ms SPADE [4], 190ms ASAP-Net (ours), 29ms

Figure 6: Cityscapes 512× 1024.

9



3.2. 4Mpix results

To showcase the effectiveness of our method for high-resolution images, we generated 2048× 2048 label maps of Facades
by upsampling the original maps [5]. We fed those into our model, which was trained on 1024× 1024 images, as well as to
SPADE [4] and pix2pixHD [6] trained for the same image size. As can be seen in Figs. 7,8, our model achieves comparable
visual quality to the two baselines but has a significantly shorter runtime1. Please note that since the models were trained on
1024× 1024 images, objects in the 2048× 2048 maps are larger than those the network trained to produce.

1For SPADE, the model cannot process such large images on the Nvidia 2080ti GPU (which we used for all our other experiments). We therefore run it on
an RTX8000 GPU with 48Gb memory. Although such a GPU should be able to process the image faster, our ASAP-Net still achieves a significant speed up.

10



2048× 2048 label map pix2pixHD [6], 711ms

SPADE [4], 1326ms ASAP-Net (ours), 130ms

Figure 7: 4Mpix facades.

11



2048× 2048 label map pix2pixHD [6], 711ms

SPADE [4], 1326ms ASAP-Net (ours), 130ms

Figure 8: 4Mpix facades.

12



3.3. Beyond labels.

In Fig. 9 we show additional results for the task of depth estimation, comparing to SPADE [4]. The architecture of SPADE is
designed specifically for the task of translating labels into images, and is therefore less successful in task like depth estimations.
Our approach, on the other hand, manages to preform well on this task.

13



input image SPADE ASAP-Net ground truth

Figure 9: Beyond labels.

14



References

[1] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth,
and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In CVPR, 2016.

[2] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional adversarial networks. In
CVPR, 2017.

[3] Xihui Liu, Guojun Yin, Jing Shao, Xiaogang Wang, and Hongsheng Li. Learning to predict layout-to-image conditional convolutions
for semantic image synthesis. In Advances in Neural Information Processing Systems, 2019.

[4] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with spatially-adaptive normalization. In
CVPR, 2019.

[5] Radim Tyleček and Radim Šára. Spatial pattern templates for recognition of objects with regular structure. In German Conference on

Pattern Recognition. Springer, 2013.
[6] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-resolution image synthesis and

semantic manipulation with conditional gans. In CVPR, 2018.

15


	. Implementation Details
	. Training Details
	. Low-resolution network architecture
	. Pixelwise networks architecture
	. Discriminator architecture
	. Computational complexity.
	. Achieving high throughput with pixel-wise MLPs.

	. Additional ablations
	. ASAP-Net vs. slimmer baseline variants.
	. Network design

	. Additional results
	. Visual comparisons
	. 4Mpix results
	. Beyond labels.


